Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies
نویسندگان
چکیده
Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy.
منابع مشابه
Use of HLA class II tetramers in tracking antigen-specific T cells and mapping T-cell epitopes.
The highly specific interaction between major histocompatibility complex (MHC)/peptide and its cognate T-cell receptor (TCR) directs to the specificity of the T-cell response. Although the interaction affinity of individual MHC/peptide and TCR molecules is low, multimerization of the MHC/peptide complexes increases the avidity of their interaction with TCRs, and enables the complexes to be used...
متن کاملFull Length or Truncated Antigen Receptor (-Chain
Ligand-induced activation of T cells involves recognition of monovalent peptide Ag complexed with a cell surface MHC-encoded molecule. In contrast, antibody-induced activation of T cells typically requires external cross-linking of the TCR. To examine the mechanisms that underlie the ability of these different stimuli to signal, we have created bispecific chimeric antibody molecules (BA) that m...
متن کاملAntigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells
Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) α-chain, TRAV1-2-TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, ...
متن کاملTherapeutic Antibodies against Intracellular Tumor Antigens
Monoclonal antibodies are among the most clinically effective drugs used to treat cancer. However, their target repertoire is limited as there are relatively few tumor-specific or tumor-associated cell surface or soluble antigens. Intracellular molecules represent nearly half of the human proteome and provide an untapped reservoir of potential therapeutic targets. Antibodies have been developed...
متن کاملPotent neutralization of staphylococcal enterotoxin B by synergistic action of chimeric antibodies.
Staphylococcal enterotoxin B (SEB), a shock-inducing exotoxin synthesized by Staphylococcus aureus, is an important cause of food poisoning and is a class B bioterrorism agent. SEB mediates antigen-independent activation of a major subset of the T-cell population by cross-linking T-cell receptors (TCRs) with class II major histocompatibility complex (MHC-II) molecules of antigen-presenting cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017